
 Chapter2 Probability distributions

Introduction to useful probability distributions

다다

continuous

Discuss key statistical concepts such as Bayesian Inference

Density estimation find Pa independent and identically

observations X 싸
iit assumption

unsupervised learning

parametric vs nonparametric

Conjugate distributions prior and posterior
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2.1 Discrete random variables concept parameters

l Bernoulli binomial beta l distribution

Bernoulli distribution

R v X E 0 11 parameter µ denote the prob of x 1

P x 1 1 µ M
마야 0스 µ E l

parameter

Bern 가 1M MX 1 M KE 30 14
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Remark

PC가 201 M p k l M 1 M t M 1

E x 0 PC가 1m l p 가스 11M M

Var 기 E I EC 가
2

M pi M 1 M

D Bernays
Assume I 가 기사 is drawn independently from some Bernoulli

Find a parameter µ p E1 in frequentist setting
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See likelihood function of µ D t 가 기사 Xi E h 0.11

p D lM j P Xn m i M ITU
나

2.5

Estimate find a parameter µ by maximizing 25

In PCD1M 횼 3 개 ln M t 1 3G ln 1 MY

In PCO IM only depends on an E 각 Find a value for µ

of

It In p 01M 0
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My 亢 홉 in E sample mean

where m of 가다

likelihood 를 최댓값으로 만드는 해

The sample mean is an example of sufficient statistic

E.G Flip a coin 3 times observe

二 Min 1
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Binomial distribution 이항분포

Let x 0 or 1 and N be trials

R V M E 0 1 NY to be of 가 1

From 2.5
m

binomial distribution a mm 1 min

M 及 of x 1 M the probability of 水 二 I
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To normalize prob dist calculate all of possible

of obtaining m x 1 Denote by

8in m 1N M 삼 mm 1 m
가 M

where 삼 i arms NG
M 0 1 2 N

We have
ECM E m Ein m 1MM

E m 삼 Nh min NM평균 7 녀의 횟수
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Var M 햕 m E MI5 8in CM l N M Nm 1 m
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2.1.1 The beta distribution

Conjugate distribution

ROI X and PLO have the same distributions

pef is called a conjugate prior for PIXIE
likelihood

Goal
가 어떤 분포를 따른건지 가정 parameter

It
posterior of O likelihood function prior of O

of O
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Recall the p DIM of Bernoulli distribution

likelihood
pco 1M 求 µ 1 m

다
an E 0.11

M
기

1 M PIM 얘기를 해야되기 때문에 M 의 관점에서 보면

To see Bayesian approach we need to introduce PCM

beta distribution
iiitiiii.in

Beta M1 a b 0 EMEI

where PC 가 f UNE JU is the gamma function 1.414
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Remark

i Beta M1 a b tµ 1 it

ExerciseECM ta Var 대 cater
a b are called hyperparameters

The posterior fist of µ has the form as

MM I me a b a pint _meth

where l N M M of 갂디
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of 7녀 K o

posterior

put me a b fEiff.mf E1ci.mdbI 2.18
a b parameters of prior

Ml result of observation

t posterior

In view of 2.18 and def of beta fist

a b can be interpreted as effective observations

of 기 1 and K 0

Sequential approach Bayesian view point
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가의 1번

Bern

X N fl
observation

13Chapter 2 Probability Distributions



Let us predict the outcome of the next trial

PC가 1 1 0 18 p x 1 N l D 해 f 化令器 해

P땼器 막쁢 am
A ㅛ 1 C

스 PC기의 1M PCA 81 이
conditionally

一二 ipafw_y.pwf_o.tn
二 附independent

pe IC

6 MP 에미Dft Efm ID

C p CA18tposteriormfiim rre.pe tlC

mtl N 14Chapter 2 Probability Distributions



PC가
2 11 으 mtiiot l N m

ia b are hyperparameters of prior

me are from the result of experiment M 아 가리

Remark

me to huge observations then ML Bayesian

fibers then variance to both prior and posterior
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2.2 Multinomial variables

Extend Bernoulli binomial beta distributions

Discrete variables that can take on one of K possible case

I of K scheme one hot encoding

x orange apple grape
orange 1 0 0 1 0.0T
apple 0.1.0 i

apple

0 1 0

o I of0 1 0

grape 0 0 1 0 0 1 T
orange 1 0 0 1 0 Of

쓰 쓰 쓰
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K dim vector ex 간 Hi as 0.0 소 0,0 Of

e 긼 1

X E 0 1 I
Let Me be p N 1 Bernoulli

The distribution of x Categorical distribution

P X 1M 惑ME one observation

where Mi M Mai with Me 20 Mk 1
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Remark

x can take K possible cases

돇 palm f Mc l

E C 1µ 돇 P X IM X M Mai µ

18Chapter 2 Probability Distributions



Consider D of N independent observations Xi HN sampled from
categoria

Likelihood
PC 미에 二 求 感 ri 二 惑Mf 二 惑 rink

where Mk 돗 Ink of observations 개 1

0 1 2 K K

Kidata
matrix K2

ink

saimaa
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Maximize log likelihood In PC DIM for µ with constraint

E Mc 의 Using Lagrange multiplier and maximizing

f Mk In Mc t X 羔 Me 1 2.31

constraint

Set the derivative of 2.31 wrt Me to zero

Me Ek

MET
MME 새싹 MET
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Multinomial distribution mi m miki

Joint distribution of the quantities m Mk conditioned

on M and on of N total observations

N
Malt M M2 Mk 1 M N

m m m 來Mdk
O EM k El

where m mi m miff 핬 Mk N

K 개 categorical 변수를 갖는 N 개 자료 에서 각 k class 가

Mk 씩 가질 확률 M 가 주어졌을 때
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2.2.1 Dirichlet distribution multi dim version of beta

Consider the prior distributions for the parameters Iml

of multinomial distribution or categorical distribution

Recall Malt Mi Mk 1 M N a 惑Mdk

pcm la a 惑 me pal avoid
1

where OE Mc El E Mc 1 Here N x Aki is

the parameter
雇

Mal is confined to a simplex of dim K 1
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Dirichlet distribution

Dir MIN piik 減 ME em E l

where MCN is the Gamma function do i E Xk

So the posterior distribution for the parameters Md

prior
P M l D N E p D1 µ p MIN a 惑 Met ME
posterior likelihood

Posterior dist again follow Dirichlet fist
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쓰 N10 x1 Dir Ml at iii prior

miiTm幾 퍖codeobservation

here mi m m ki

As binomial dist with beta prior we can interpret e

Xk of Dirichlet prior as an effective of de 1

Fine Bayesian

L
t NCYCX.ir fDO
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2.3 The Gaussian distribution a.k.a normal fist

Single real value x E IR

N 가 1 M82 口 幽 exp 1 IT 기 M2

where µ mean d variance
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D dim vector X E

IRON

X 1 M I ed Ii exp I x mi I MY
1 0 ON 0시

where M 0 tim mean vector E 0 0 covariance matrix

l E l determinant of I
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Remark Why Gaussian is important

Fits many natural phenomena

Maximum entropy in continuous rv

Central limit theorem

Fix N did random samples of vector X H 싸 are

drawn from a population with M I

R.us N if n N M 六 E

sample

mean
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Let us see geometrical form of Gaussian

H Mi I A M
N 1M 도

1 0 0 0 ON

is called Mahalanobis distance from µ to x

W LOG assume I is symmetric and real

Consider the eigenvector equation of E

E Uli Xi Uli in O

constant 인
의 벌임
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Eigenvalues 刀 To are real and its eigenvectors can be

chosen to form an orthonormal set so that

Uli Uj Ii

where Ii is the i element of the identity matrix

By eigenvector decomposition I can be expressed as

value

E E Xi Uli Uli 0시 1 0

0 0 vector

and i 羔 羌 ci ui inverse

29Chapter 2 Probability Distributions



I wit x M K Mi 늤 Uli 내지 K M

1 0 0 0 0 1Mahalanobis
distance Y2

i C 인
T10Y K 의 모임

where yi mi H M inner product of Uli X M

1 0 0 시 X

Yi new coordinate system defined by Uli shifted and rotate

Let y Y Yo Then Y U x M where

Uli
네

ii
whose rows are ui
orthogonal matrix 30Chapter 2 Probability Distributions



Remark

It 과 30 Vii O contour surface of ㅿ is ellipsoid

center M axes oriented along Uli and sailing factors

are given by it
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W LOG assume all eigenvalues of I are strictly positive

otherwise the distribution cannot be normalized see ch 12

i.e I is assume to be positive definite

Y U K M

Now consider the Gaussian dist in yi coordinate system

Jacobian matrix J with 1.27
가 G

RMCTGCYDlgi.nl

Ji ji Uji

Uy tm
where Uji are element of UT
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So
I J12 1 UT12 1 UT l I U l 1 UT U l 1 I1 1

and hence I J1 I1 Also II I can be written as

1도 1 惑 刀

ㅇㅇㅇㅇ

Y U K M

Thus in the yj coordinate system

pal PC씨 HEIDI 惑
a

exp卜涉
T Pitt

pays is the product of O independent univariate Gaussian
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In 1.49 1 51 we found univariate Gaussian dist

has
EGG M Var 가 82

0 Jim 0 0

Now we will interpret parameters µ I

氏 刈 de li exp j x Mi I x M Y d

二 de Ii exp t.IE I 지 ttm de

where we have changed variables using Z x M
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Note that the exponent is even So the term E

in the factor Et M will vanish

E 幻 二 M

X EN

Now consider the second order moments of multivariate

Gaussian In univariate case the second order moment

is given by Ellis In multivariate Gaussian there are

마 second order moments given by E Exit

剡 此 烙
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Ea 如 二 fi fexplic miIcx mYx

idx0XllX0zczi
cfiifexpl IZiIzt1 ZitM5 ta

Z i x M Vanish by Symmetry constant

A Gtm Etf Zeit mi tmi

transpose of

Recall y U H M rows of U are Eigenvectors of

卍 二 y 내 네이 沾 Y 내
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cd.it expliziizi1zizitz

c幽 IT 羔 羔 mini exp f I 쁦 Y til dy

羔 Uli Uli Xi

we have used 1도 1 y xi and lie expYET No

e.g 0 2

15 exp i exp
一 逑 Yi its

will vanish when it 37Chapter 2 Probability Distributions



Thus we obtain ECK 씨 mi E oxo matrix

and covariance of x can be obtained by

COVEN t.EE EUxD x EajiJ
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o ON
sym realRemark NCH IM I

of parameters T quadratic

E ding f or 이 I deep dive

20 Otl into Gaussian

Unimodal single maximum
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2.3.1 Conditional Gaussian distributions

i 0 dimensional vector with NC x l m I which is

partitioned into Ha 씸 with fat E垈
私

삼

corresponding partitions of mean vector covariance matrix

ii

µ 냖 E
Eaa Ears

D MX M D MX 0 M

Note that E I implies Iaa Ebb are symmetric Iba Eai 40Chapter 2 Probability Distributions



I

Let N I Inverse of covariance matrix precision matrix
M XM

八 二
Aaa hab

Aba Abb 0 MX0 개

Note that Aaa Abb are symmetric Aba Aib

Aaa t Ei

Find conditional distribution petal 삼 Fix Hb

Consider the quadratic form in the exponent
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삼 fixedjawi IC 사에 쁘 0 0
쑈 b

j Ka Mai Aaa Ha Ma j 쏘 MaiAab Ab Mb
2.70

ㅎ 如 一MbfNba Ka Ma j 和 一MbfAbb Kb Mb

First Paal 씸 will be M dim Gaussian because density

function is a quadratic form of exponent

Now we are going to find its mean vector and covariance

by completeting the square
M 8

cm 88 岡
1 0 0 0 0 1
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Eg in case pas a exp a.it bit c 가는 gaussian

pay a exp a it Ext fi it 이
a exp t a xt ET Y

PC가 N X 1 M d µ Pi G2 _IT

Since N X 1M E a exp II I 2M 가 t µ
2

a exp 一式 it Ex I
a i b E m E d E
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Likewise the exponent in 0 dim Gaussian can be written

f K mi E x M IO E txTEMt constant

In view of 2.70 seed in Aa

ii Aaa Ha

So we obtain covariance of petal Kb is given by

Iab Acid Eaa
Malls
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Now consider all of the terms in 2.70 that are linear

in Ha

Ki l Aaa Ma Aab Xb Mb Y

where we have used Aia Nab

Since 긺 Mab AaaMa Nab ㅧ b Mb

Mi
Mal b E Ey b l Na Ma Nab ㅧ b M b l

Na Mi Hab Kb_Mb 45Chapter 2 Probability Distributions



Malts Ma Ail Aab 삼 Mb Iab Ai

Let us find Aaa and Nab

I

Recall 八 E
1 Aaa habEaa Iab

Nba AbbEba Ebb

Use the following identification for the inverse of a partitioned

ME 이matrix Afi
M

2.76미 CM E't CM B

where M A 8 미 C 46Chapter 2 Probability Distributions



So we have

Aaa Eaa Ears Eri Ebai
Nba Eaa Iab E bi Ibaf Ears hi

and hence

Mal b Ma t Iab Iti Kb Mb Kb fix

E al b Eaa Iab Eis Iba
Remark

Malls is a linear function of xb

S.am Is independent of Xb
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2.3.2 Marginal Gaussian distributions

Consider the following marginal distribution Next ms

Mpaa5 Plan 삼 d b 秀 0 개

1Kb로 적분해서 남는 쑈가 어떤 분포인지

Strategy focus on quadratic form of exponent and identify

the mean vector and covariance matrix of paa

Recall 2.70

j x mi I x m

j Na Mai Aaa Ha Ma j 쏘 MaiAab Ab Mb

ㅎ 如 一MbfNba Ka Ma j 和 一MbfAbb Kb MD 48Chapter 2 Probability Distributions



In order to integrate out Kb pick out those terms

involving 씸

ㅎ Kill bb Xb t Kj MI 하심 Abi mi Abb 加 一 Ari m
2.84

j mini m square expression

where
mi AbbMb 一 八 ㅯ a

一

µ 이

ㅡ 一

H의 Of 씸

For peta 1 P Aa Kb JIM

2.86 f exp 1 하심 ADMITAbb 加 一 Ai MI Y ㅄb
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which is an inverse of the normalization coefficient

As seen before this coefficient is independent of mean

Combining the last term I mini m in 2.84 with remaining

terms in 2.70 depending on Ha we obtain

I mini m_ji Aaa Ha t Ii Aaa Ma t NabMlb t constant

this Mb Aba Ka Mai Abi AbbMb Aba Ka Ma

t Ki Aaa Ma t NabMb t constant

후쌊낪함이함r

상I11ha2 at Xi Naina Ai Nba ma
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Recall the exponent in 0 dim Gaussian can be written

j _mi E x M E E EM t constant

Denote the covariance of paa by Ea and Ea is

given by
si 싨 a

一

ab 삼5爲
Similarly mean vector is given by

Ea i 幾 Ma Ma
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To simplify at Aaa Aab Mill bat

recall Aaa hab Eaa Iab
Nba 八 bb Eba Ebb

and use 2.76 expression of the inverse of a partitioned

matrix
EE Aaa hab Mi Abat Eaa

Thus we have Ead 二 竺 cov N E
스
tDB 가

where Pea 5 P Ka b d b
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N X1 M I with N E1 0 Jim

剡 µ 쑪 s faa
Ears 仁

싰 삼

Eba Ebb Nba Abb

Conditioned distribution

petal Xb N Kal Mab Nai

Malls Ma had Aab 삼 Mb

Marginal distribution

pea N Na I Ma Eaa
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2.3.3 Bayes theorem for Gaussian variables

Linear Gaussian motel example

Gaussian marginal fist pa Gaussian conditional dist pay 1씨

p Y1 x has a mean as a linear function of x and

a covariance which is independent of X

KE M tim
i.e p x N X 1 M N

Y E 0 tim

p Y1 X N Y l A b L

where µ A and Ib are parameters governing the means

and IT and L are precision matrices
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We will find pay and p X1 T
Known

PC씨
marginal conditional

PC YIK

Let
z 삼 and us consider the joint prob dist

pal pi N P 1씨미씨
2.102

ln pea ln PA ln P Y1 K

I x min x M inter of H Y

I Y A 乂 一 lbf L Y A b const

Y
This is a quadratic function of the component of t

hence Pets is a Gaussian
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1

Consider the second term In 2.102

I At ATL A IT LY t I TLA x t ㅎ 必 心 Ly

i 剡
丁 十 心 LA

LA 만 爻 I I RE

E has precision inverse of covariance matrix given by

t AT LA
LA

A단卍 馮

이 卍了 N ㅺ 心心
2.105

AN L t A 心心
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Consider the linear term in 2.102

씨 N에 必 心 L b t YTL b 剡
下 AM ATL 1b

Lb

E 玎 R AM ATL 1b
Lb

m
t 2 108

AM b Y
A tb

Using section 2.3.2 and p Y 1 P E

tx.EEJ

AMt1bC0vCYJ
L t A 心心
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Now we can find an expression for pc x ly

EC lY 11 t AT L AT S AT L Y b t Am I

Cov K l Y 八十 AT LA

59Chapter 2 Probability Distributions



60Chapter 2 Probability Distributions



2.3.4 Maximum likelihood for the Gaussian

Data set X X 禿尸 쎄 iit samples of 0 dimensional

Gaussian The log likelihood function is given by

In PC X IME X NX0 matrix

1부 lie Ten III If 싸 Mi I Kim

Note that likelihood function depends only on the following two

quantities
N N

E 씩 돘 Anxi
nil 61Chapter 2 Probability Distributions



These are known as sufficient statistics for Gaussian

T.hn p X1 M I 홉 E Kim 0 dim vector

set this gradient to zero vector we obtain

MML 亢 羔 Xn
Solution of maximum

likelihood estimator

sample mean M LE

Em 亡 乖 An Man Xn Maui

sample covariance
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Remark

EML involves MML
eerie

Man is independent of IML

ECT to

Evaluate the expectations of the solutions under the true

distribution Then we obtain

E Mm

MEIm E

Unbiased estimate
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2.3.5 Sequential estimation

Sequential estimation for maximum likelihood

This method allows data points to be proceed one at time

and then discarded and are important for on line applications

Consider
µ 센 亢 羔 An

which we will denote by iii based on N observations
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N

Min 憔 仰 似
塋
ㆁ

光 狐 t ㅎ핬An

i n misfitin
MLE

ri
mi t ㅎ 갊譽 a

9E Oi an Z at
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General formulation of sequential learning Robbins Monro

Two rv Z O governed by a joint distribution pcz.ca

Define deterministic function fue by

fat E 2 10 S z p Z10 ft E Ct

editorial expectation

which is a function of O called regression function

Find the root 여 at which 5 여 0

Suppose we can observe values of z one at a time
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Assume the conditional variance of Z is finite
fo

tiE 2 5 0 a

여 solution ot on
and vlog fiasco for 0 에 and 5 0 0 for Olot

A sequence of successive estimates of the root given by

EN 0C
사

_am Z o 2.129

Where Z Ol is an observed value of Z when 0 0
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fat represents a seq of positive numbers satisfying

lim
Nta

AN O

E aw o e.g ㅎ

Eats 05 510

By Robbins Monro 2.129 converges to the root with

probability one

Remark

Third condition ensures that the accumulated noise has

finite variance and hence does not spoil convergence
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I

General Maximum likelihood problem GO Sz palo tz

By definition of One One satisfies
Gc i ln P NO

Nati紅 呱 에 ioat

Taking Net and exchanging derivative and summation

fig ㅎ 핪 클o lnp 각 10 Ex E ln P X10

테다매O fit 亡幷 fan observations 긱

Ie find the footer of a regressions
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Apply Robbins Monro procedure

of G
사

_am at ln PCRN10
대 2.135

Specific example sequential estimation of the mean of

Gaussian distribution

In this case 에 is the Mi mean of the Gaussian

and z is given by 2.136

z Pi ln p X1 Man G E X Min

70Chapter 2 Probability Distributions



Substituting 2 136 into 2.135 with AN 있다

then we obtain 2.126
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2.3.6 Bayesian inference for the Gaussian

MLE method gave point estimates for µ I section 2.3.4

Now develop a Bayesian treatment

Single Gaussian random variable 가 Suppose 이 is known

Aim to inference µ given N observations 乂 二 수 가 기사

The likelihood function is given by

New二 烋 P 매 1m IT exp 1 ㅎ E Xn MY

Note that this function is the form of the exponential of

a quadratic form of µ
72Chapter 2 Probability Distributions



i µ

We will choose a prior pom given by Gaussian because

the product of two exponentials of quadratic function of

µ will also be Gaussian

Take prior prob pcm to be

PCM N M1 m E2
M 82 hyperparameter

Posterior
N M1A 82

put 1 a palm put
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Exercise 2.38 we obtain

P 대 1 X N min q

P 아대아 parameters

ㅎ I 각

where Mv N Mo t NEE MMill

at 訌

Remark

Mv Is a compromise between Me and Men

Effect of change in value N
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Precision is additive if N to 아 to

When N is finite if

ftp.thenthepoteriormeanrehc.esto Muc and variance of becomes it

Sequential inference in Bayesian paradigm

P MIN d P 에 T pan내기 PC 자 1M

posterior
a posterior distribution
after observing art data

水二 가 it
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No we wish to infer the variance and assume mean is known

Let the precision 刀 江 Ya The likelihood function of 刀

PCX17 惑 Nan l M i is exp 횼 가 µf
lie

the form of 刀
佑

exp I

The corresponds to gamma distribution

Gam 71 a b 늤 bai exp b 刀 刀上

Here PC에 is a gamma function ma 1Pu
에 대해
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Remark

If aso gamma distribution has finite integral

It all the distribution itself is finite

E D E Var C D i
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Consider the prior fist Gam T l ao bo Cao bo hyperparameter

The posterior fist of X is as below

쏐옶샹 瑟器
ae.in

Ttx
a YO in exp _box_ 핬 Xn M5 Y 2.149

PCI 1X Gam 71 AN bar where

AN aot E

bN b.tt 핬 Xn M2 b t at 78Chapter 2 Probability Distributions



Remark

Effect of observing N data points

increases the value of a by

a b by Tai
We can interpreter the parameter do in terms of sao

effective prior observations

氏 切 IN i iiiii_re.rs I
var 기 刈 二 i E 0 홌
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Now suppose that the both µ and 刀 are unknown

Consider the dependence of the likelihood function on µ and 7

pct IM 九 烋 這兆 exp E Xn M21

재 alt exp 깔기 explainEm i 焦竹
Thus the prior distribution should take the form

pan a 갸 exp TT explain d개

eihl
tap 筵

2'53
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where c d and p are constants Use pema p M7 pal

PCM刀 a Gaussian whose precision is a linear function of a

pa a gamma distribution So we take a prior

P M X N M l Mo p 刀八 Gam 71 a b 2.154

where Mo 4ps a H8 b d p

2.154 is called normal gamma or Gaussian gamma

Note that it is not the simply the product of an independent

Gaussian prior and gamma prior
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Multivariate Gaussian N X1 M N for 0 dim x

First when precision matrix Il is known the conjugate prior

distribution is again a Gaussian

Second for known mean and unknown precision matrix A

the conjugate prior distribution is the Wishart distribution

given by
face

of matrix

W N1 m U BIN exp I Tr will

where W is called the number of degrees of freedom
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내 is a 0 0 scale matrix The romanization constant 8 is

given by

8 W1 v 1 mi 20012 T
여 4 惑 p

U等 Y

If both the mean and precision are unknown the conjugate

prior is given by

p M A l Mo P W1 v N M l Mo p N W A1 W1 W

which is known as the normal Wishart or Gaussian Wishart83Chapter 2 Probability Distributions



2.3.7 Student's t distribution

Conjugate prior for the precision of a Gaussian is given

by a gamma distribution

Consider univariate Gaussian Nal M E with Gamma prior

Gam I I a b Integrate out the precision

PC가 1M a b 18 N X1 M E Gam El a b de

5f쁨 1듨 exp Ex MY de

E 言忙 bt 쓸 f 참 a 최
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where we have made the change of variable Z E b t x M는

Define new parameters v 2 a and 刀 二 b

St X1 M x U
M부쁨 곪 f it

水 入娑
2

known as Student's t distribution ㅋ is called precision and

v is called the degree of freedom

When v 1 t distribution reduces to the Cauchy dist

While in the limit Ut e t distribution becomes

Gaussian NC 가1M 가
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Remark

t dist can be interpreted infinite mixture of Gaussian

Longer tail robustness property
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Multivariate Student's t distribution

St KIM U P N X1 M 7 시 Gam 7 1 92 V12 t 7

쌍器 山器 lu ET
일

where
ㅿ x min A M

Remark

E N m if U I

cov 刈 二 Iis N it v72

mode 刈 二
M
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m
2.3.8 Periodic variables

Consider an angular polar Coordinate 0 스 Oh ㄵ and

the problem of evaluating the mean of observations

0 40 ONI

Pimple average Qt ODIN is strongly coordinate dependent

Set angular observations as points on unit circle

Let Xi be two dim vector with Xi cos Oi sindi

embedding
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Average the vectors Any instead to give

女 二 元 誣
F cost sin E

i.e T cos E 六 E 0SOn F sin E 六 E Sin On

Thus we can solve for E to give

E tail i 邀
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Consider PC에 that have period ㄿ and must satisfies

PCO 20

f
뽒

ㅇ R2

f NO do 1

P Qt2 가 PC의

We can easily obtain a Gaussian like distribution

Consider a Gaussian over 乂 二 Cx X2 having mean M M M

and covariance matrix 이 I so that

PC가 간 2t exp
미대 D2I쁨

2.173
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Map K 기 간 and m into polar coordinates

지다 050 X2 r since

M ro cos 앙 M2 to Sin Oo fixed no Oo

substitute these transformation into 2.173 with r 1 condition

The exponent in 2.173

2
rose_roco sai r sina.ro sina.it

r 1

El It ht 2b 05O 05 O 2 ro sin 0 sin Oo l

흫 cos O 8 t const
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Define ME To Then we obtain the expression for the

distribution of p O along unit circle

PCO l Oo M i in exp m cos 0 0이 I

which called von Mises distribution Here Oo represents the

mean and m 미아 is called concentration parameter

I.cm i zeroth order Bessel function of the first kind

I.cm i e in exp m cos 이 do
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Now consider the maximum likelihood for Oo and m

Observations D t O ONI is given

N

la PCD l Oo m

n
P On1 8 M

2.181

N

N ln 2 조 N ln T.fm t M COS On
n

8

Set the derivative w.int Oo equal to zero gives

羔 sin On 앙 0

E SinOnThus we obtain of tailed 93Chapter 2 Probability Distributions



Similarly maximizing 2.181 w.int m Set the derivative of

2.181 w.r.tn then we have

A m 羔 Cos 0n 8
세

2.185

where we used Tim I C에 and have defined

ACM i 좋씀

We can rewrite 2.185 in the form

A Min 亢 羔 0SOn eat t 亢 羔 sinOn sin at
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Here Acm can be inverted unmadeally

Remark other techniques to construct periodic variable

Histogram in polar coordinates

Mixtures of von Mises distributions
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2.3.9 Mixtures of Gaussian s

Limitations of a Gaussian unimodal

Mixture distribution linear combinations of basic distributions
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Mixture of Gaussians i superposition of K Gaussian

spa羔 Tk N X l Mk Ek

Each NC X l Mk I is called a component of mixture

The parameter Tk are called mixing coefficients and satisfies

표지 0 드 죠 스 1
K의
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PC씨 can be rewrite in the form

K

PCH 돉 PCK PCX K

자 pek prior probability of picking the Kth component

N X1 Mk E p X1 K probability of x conditioned on K
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Consider the posterior pc KIX a.k.a responsibilities

ka p K1 씨 器今 믄띧炅器 u

졂삶씬籤
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Gaussian mixture is governed by a 지 They M M Mal

and sit a Ek l

One way to set these parameters is to use maximum

likelihood

h p X 1 TI M I E ln l 전 N Xn1 Mk E

Maximum likelihood solution for the parameters no longer has

a closed form analytical solution

Expectation maximization chapter 9
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2.4 The exponential family

Broad class of distributions called the exponentials family

Random vector X parameters 에 called natural parameters

P X I 71 h G 71 exp 7F네 X 1 2.194

Here 내내 is some function of x and genn can be interpreter

as the normalization coefficient i.e

g 71 f ha exp 서네 H l dX 1 2.195

101Chapter 2 Probability Distributions



Recall Bernoulli distribution

PC가 1 µ Bern X1 M pi 1 M
가

x 0 1

EX미 가 ln µ t l N ln l N Y

1 m exp ln fµ一 가 I

Comparison with 2.194

7 ln MT
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Solve for µ to give

µ 이에 ted logistic sigmoid

Thus Bernoulli distribution can be reunited in the form

PC기 17 057 exp 7 기

we have used FE7 1 0 7 Comparison with 2.194

U X X

h 기 1

gun 057
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Next consider the multinomial distribution

palm 煎 ME exp 羔 간 lnMe

where X X KMT one hot vector

The standard representation 2.149 so that

PCH 171 exp 叩乂

where 71 7 7µF with 7k ln Me i.e

Ula X h K 1 G 71 1
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Since 핪 Me 의 parameters 7k are not independent

i.e Mrs l E Me left M 1 parameters

E 기K ln 1 ENDOf Me 스 1 焦 Me 스 l

E Rk laMk

So the multinomial distribution becomes 悤入

exp E Sk laMcY exp e Sk laMc t 가서 h쎧
ln 1 一然Me

exp I 씰간에 fi tln lEMk11kl
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Now identify

In 1 MA 7 K

and
m afif

soft max
normalized exponential

In this representation multinomial distribution

pal 71 1 t exp 7kY exp nix
Kil

7 7 7 세 0 T M dimensional
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U1 A X KA 1 g 71 1 十 煎 exp 7kY

Finally consider the univariate Gaussian distribution

p X1 µ 02 and EXP 1 262 x Mi Y

expti.it Ex_it 1

7 으흐흐 U1 가 간 h X Ei gcn 27.5exp 씂
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2.4.1 Maximum likelihood and sufficient statistics

Consider the exponential family of distributions over x

pal 71 h g 71 exp 7T UCI 1 2 194

Taking the gradient of both site of

g 71 f ha exp 서네 H l J I

went 에 we have

7g 에 f ha exp 7T Uel

txtg 7D ha exp177U1 MY Ula tx 0
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Using 2.195 then

gli 7g 71 GC에 f ha exp 17T 에CA Y Ula tx E 대1

We therefore obtain the result

T In G에 E 대 水

Now consider it samples denoted by X 1 ANY

for which likelihood

P X17 惑 han gui exp l ni f man I 109Chapter 2 Probability Distributions



Setting the gradient of ln P X17 writ 71 to zero

We get the following condition to be satisfied by 71mL

7 lng 71ML 亢惑 Ulan

Note that MLE depends on the data only through Gulen

called sufficient statistic of 2.194

Do not need to store the entire data

E.g Bernoulli via x sum of 가에

Gaussian 네 x 기 if sum of 가에 and 구 351
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2.4.2 Conjugate prior

For a given prob density palm seek a prior PC에

that is conjugate to the likelihood function

the posterior has the same functional form as the prior

For exponential family 2.194 ㅋ conjugate prior of 미

PC에 1 X U f X W genii exp Unix l

where 5 대 D is a normalization coefficient and gum is

the same function in 2.194 111Chapter 2 Probability Distributions



The posterior

P 71 1 X X U d P X 1 71 p 71 1 X U

a gcnY exp l ni 羔 내 식 t UX Y

112Chapter 2 Probability Distributions



2.4.3 No informative priors

Intend to have as litter influence on the posterior as

possible

Let density or likelihood is given by pal 刀

Consider non informative prior pox

First pa constant

If the domain of X is unbounded prior cannot be

normalized Such prior is called improper

Transformation behavior of density under a nonlinear change

of variables
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Example l

Density of x takes the form

P K M f x M

M is known as location parameter E.g N X1 M 82

Translation invariance

If 가 I xtc then

PCI 1 f f I A

where we have defined I µ to 114Chapter 2 Probability Distributions



Thus palm PCI IT so density is independent of origin

Prior distribution should satisfy this translation invariance property

of PCM M if pcm tu f PCM c 해 ㅂ
A.io

So we have per c p M

Example of location parameter i mean of a Gaussian

The conjugate prior for µ is again Gaussian put It E

and we obtain non informative prior by taking Eet o
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Example 2

Density of x takes the form

PC가 18 ㅎ51중 o o

G is known as scale parameter E.g N X1 M 82

Scale invariance

If 가 I C 가 then

PCI 18 ㅎ 5 츻

where we have defined 8 co 116Chapter 2 Probability Distributions



So this transformation corresponds to a change of scale

Prior distribution should satisfy this scale invariance property

i PC이 do 二 佇 pc 이 do f p 는이는 to ㅂ
A.to

So we have pco p E 이는 and hence PC이 a ㅎ

Note that this is an improper prior because of 0 0 0

o e s

b b o o Re
I뿧 lift constant

So ln ds ㅎ to
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Convenient to think of prior for scale parameter in terms of

the density of the log of the parameter

Example of scale parameter standard deviation o of a Gaussian

NC 가 1M 이 a E exp t.CI o5I

where I i x M

More convenient to work in terms of the precision

刀 二 Yo rather than o itself deeds
乃 二 衣 f ㅎ

6 ㅎ a 막기 P1이 tl a 뉴 118Chapter 2 Probability Distributions



We have seen the conjugate prior for 刀 was Gama lao bo

The non informative is obtained as the special case at bo 0
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2.5 Nonparametric Methods

Approaches to density modeling

Parametric vs Nonparametric few assumptions

Histogram method for density estimation

Single continuous random variable x Partition 가 into

distinct bins of width ㅿi and then count the number

ni of observations of 가 falling in bin i

ihl 1 1 1 1
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We obtain probability values for each bin given by

Pi it

where N is of total observations So a model for

the density pas is piecewise constant over the width tri

of each bin and often the bins are chosen to have

the same width ㅿi
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Remark

Effect of a choice of width smoothing parameter

After empting histogram the data set can be discarded

Useful tool for a quick visualization of 1 t or 2nd data

Limitation of high dimensional data MY M bins in 0 dim
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2.5.1 kernel density estimator

Estimate unknown probability density pas in 0 5cm space

Consider some small region R containing X

Then the probability mass associated with this R

P k PCH tx true prob

Suppose we observed N data set drawn from pas

Since each point has a probability P of falling within R

Bin K l N P 삼 PK 1 PT 1 0,1 N
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E KIN P var
1 PC1 PIN

For large N

K N P

If the region R is sufficiently small that pa is roughly

constant over R then

P P씨 V 쬰吻

where V is the volume of R
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Combining these expressions we obtain the density estimate

PCH KT 2.246

R 영역

Remark i two contradictory assumptions on R and K

We can exploit 2.246 in two different ways

K nearest neighbour method fix K

kernel density estimator fix V1

125Chapter 2 Probability Distributions



Kernel method in detail

Take the region R to be a small hypercube centered on X

To count the number K of points falling within R define

KUI ㅎ
I Uil 스 ㅎ it D

otherwise

Kun is an example of kernel function i.e the quantity

K 水 一 私 h 1 if An lies in a cube of site h centre

on x otherwise O

fit
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The total number of points lying in the cube

k 二 羔 k 幽川 任彗入
Substituting this expression into 2.246

Pa 文 羔言 K t

where we have used V M example of kernel density estimator
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We can obtain a smoother density model Gaussian kernel

마씨 文羔 dies 1 쌀쎽

where h represents the standard deviation of Gaussian component

and plays the role of a smoothing parameter

Generally we can choose any other kernel function Ka

subject to

Kill 20

f K UI JUI 1
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Remark

No computation involved in the training phase

Computational cost grows linearly with the data size
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2.5.2 Nearest neighbour methods

K nearest neighbours

For local density estimation fix value of K and use the

data to find an appropriate value for V

Consider a sphere centered on x and allow the radius

to grow until it contains K data points i.e the radius

is not determined fixed

The value of K governs the degree of smoothing

Use 2.246
마씨 nice with KNN method for density

estimation
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KNN method can be extended to classification

Apply KNN to each class separately and then make use

of Gaye's theorem

N i total of data set Nk i of points in Ck

i.e e N k N

New point X fixed Draw a sphere centered on x

containing precisely K points irrespective of their class

This sphere has the volume V and contains Kk points from

the class Ck
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PC 1 k 涇
Similarly the unconditioned density is given by

PCH 式
and class prior PC다 M4N K 5

Combining these equations and using Baye's theorem

Mac 1 X 마씩擧 Ere

P 刈 泮 水 卵 怡
t.IE
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To minimize the probability of misclassification assign x to

the class having the largest posterior probability Kkk

The particular case of 1 1 is called nearest_neighbour

What happen if KEN
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Remark

K controls the degree of smoothing

KNN and Kennel density methods require the entire

data set to stored
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