



























Chapter 6 Kernel method

We considered linear parametric models in which of

the form of mapping yet wi is governed by w

of adaptive train able parameters

Training set is used either to find a point estimate

of w or to determine a posterior distribution of w

There is a class of ML in which the training data

points are kept and used during the prediction phase

Eg K NN and Par zen probability density model






























They require a metric to be defined that measures

the similarity of any two rectors in input space

Linear parametric models can be written in a dual

representation In this form predictions are mate using

linear combination of kernel functions which are

calculatedusing the training data points

This works well when the model uses a fixed

nonlinearmapping to transform the input data into a






























feature space

K CX N EXT ICH'S

The simplest Kernel function comes from using the

identity mapping for the feature transformation IX N

In this case

KLA N XT x

This called the linear kernel






























Kernel trick Kernel substitution

When an algorithm uses input vectors only through dot

products replace the dot product with a kernel

function to make it work in a nonlinear feature

space






























Dual representation

Consider a linear regression model with regularized

SSE error function given by

J W1 E I wi I An tn y 골 w Tw 6.2

where 720

Set Tw Jew 0 Then we see that the solution for

WI takes the form of a linear combination of the

vectors I Xn with coefficients that are function of w

m 方玆 a wi I n tnt I An an I n 닸ia 6.3






























where I is the design matrix and a ca ant with

an 一方 a wi I h tiny

We will reformulate the least squares algorithm in

terms of the parameter vector a which leads to

a dual representation of the algorithm

Substitute w I a into Jew 6.2

Jca 늘 at III IT a ai I It it't t ii I Iia

where t t t2 tnt






























Now we define the gram matrix k OI IT which is

an N x N symmetric matrix with elements

Knm I nTEAM K n Km

In terms of the gram matrix SSE error can be written

as

Jca ai k ka aik t t 늘 t't t 끌 aka

Using 6.3 to eliminate w from 6.4 and solving

for a we obtain

A K 7 In t






























For linear regression model we obtain the following

prediction for a new input x a

Y N WII X d I I K T It 6.9

where IK x with kn A K k n N I ni I X

for n 1 2 N

The dual formulation allows the solution to the least

square problem to be expressed by Key

Thus we see that the formulation allows the solution

to the least square problem to be expressed entirely in






























terms of the kernel function Key dual formulation

a can be written as a linear combination of the feature

vector IX So we can recover the original parameter

vector W






























Remark

To determine w we need 0cm calculations

In the dual formulation to determine a we need O N

The dual formulation uses only the kernel function

ie we to not need to compute the feature vector

IX directly

We can work in high even infinite dimensional space

without extra cost all through the kernel






























기존 basis function 방법

1 Fix a basis function I X 00C my A
T

2 Model y x WTI x with weight vector w

3 Finding w minimizing the cost function below

JCW 늘E dwi I An tnk t 골 wiw

where 720






























Kernel trick dual representation

1 Fix a kernel function K Cx x

2 Model y x Ikoyi where IK X K CX KEY KNXT

and K.CH K X X

3 Finding a minimizing the cost function below

Jca ai k ka aik t t 늘 t't t 끌 aka

where Knm K An m 7 Z 0






























6.2 Constructing kernels

In order to use kernel substitution we need to construct

valid kernel functions

One approach is to choose a feature space mapping

I and then use this to find the corresponding kern e

K CH N I LATE d ALA

where X are basis functions



























































Alternative approach is to build kernel function directly

without thinking about the feature mapping I

However to be a valid kernel the function must

satisfycertain conditions It should correspond to a dot

product in some feature space even infinite dimensional

Mathematically this means the kernel matrix K where

Knm K n Xm must be

symmetric knm Kmn

Positive semi definite






























Eg Consider the kernel function given by

KCH Z AT ZR

In case of 0 2 we can expand out the terms and

identify the corresponding nonlinear feature mapping

K H Z T22 A Z 222

R Z2t2 가 Zplz 갈로

R E247C2 갈 Z EZ Z2 Z를T
INT I Z

Feature mapping IN 기 Ex ET






























Here are the main properties that allow combining simpler

Kernels to build more powerful one






























Polynomial Kernel example

K X X XT y R

includes only terms of degree 2






























If we add a constant before squaring like

K X N NTN't CP where c o

then the feature space becomes richer

This kernel includes a constant bias linear terms x

and degree 2 terms x or 가

KCA N 2 lit c 24 list 2 x lix x i t 2ER

2C 344 2C 22E C2
X 갦

I TI N

I X EC2G EC 2 2P E342 갈 c T






























In general

K CX X XT y

gives a feature space with all monomials up to

degree M






























One commonly used kernel is the Gaussian kernel

aka R B F Kernel

KWA exp e
This kernel measures how close two vectors x and y

are

Key x's is close to l if and are similar

KCA is close to o if and are far apart

Although it looks like a Gaussian probability density here

it is not used as a probability






























ROF kernel is a valid kernel

11X R KTX KTX 2 tx

So

KCA N exp fr exp exp f
Because of 6.14 and 6.16 together with the validity

of the linear kernel K y N Tx






























Remark

The Gaussian kernel corresponds to an infinite dimensional

feature mapping IX exercise 6.11

The Gaussian kernel is not restricted to the use of

Euclidean distance Ie XT x can be replaced with

any nonlinear kernel K cx

K x N exp d K x KWA 2K LX x Y






























One useful way to build kernel is by using a

probabilistic generative model

suppose we have a generative model pex Then we

can define a kernel as

KCA N P X PLY

This is a valid because it can be written as an inner

product

K X N I X I X where I X PCA






























Note that it is a very simple feature mapping where

each input is just mapped to a scalar value pex

In practice more advanced versions use likelihood function

or posterior distributions as features

It says that x and are similar i5 they both

have high probabilities






























Example kernel from a Gaussian Mixture Model

Assume PCN
자 N XI MK E K

P Z K P XI Z K

and estimates ㅈ Mk Ʃ k for k 1 2 K

For each calculate the posterior responsibility
ㅈK N CX I MIK Ek

K X P Z K I X
E.DNCNIMI 2TT

Define I N X eat and

K N N I AT I N






























This kernel measures the similarity between two vectors

based on how responsible each Gaussian component is

for generating them






























Kernels from mixture models with latent variable

We can build more flexible kernels by summing over

multiple components in a probabilistic mixture model

1 Discrete case

Suppose we have

latent variable ie 31,2 KY

prob distribution for each component p X I i

prior over components pci

The kernel K x x 羔 PLAID Pex Ii PCi






























Remark

This kernel is large when and both have high

likelihood under the same components

It reflects how similarly the motel explains the

two inputs

The latent variable i can be seen as a latent

variable e.g cluster index in a mixture model






























2 Continuous case

If the latent variable Z is continuous we replace

the sum with an integral

KH N S P XI Z PCA Z P Z d

where Z is a continuous latent variable






























Another example of a kernel function is the sigmoidal

kernel

K CX tan h atx't b

Remark

This function looks like the activation function in

neural network

This kernel is not always valid

its gram matrix is not guaranteed to be positive

semi definite for all a b and data set






























Support vector machine

Two class classification problem

Linearly separable data set NERO t l or 1

There are infinitely many decision boundaries What is

the best decision boundary






























SVM Wixtbe
quadratic

min WTWI objective

linear

st ti wi xi t b I i 1 N constraints

This is a quadratic optimization problem

The one method that maximizes the distance to the

closest data points from both classes

Maximal margin






























Decision boundary

Y x wix t b is a hyperplain

net
11_1iwwixtbdepentsonxX

xptrm.YX wTxtb wixpt b t r 냇i냈 r i will

Define a function r RO et R as

rex eu signed distance of from the

decision surface






























Margin The smallest distance between the decision

boundary and any data points

W1 b 으로

결정

멌 ii
IWT xt bl

rcw b mid I K 씨 1 Mid 삢 E
n mi

Remark rcw b is scale invariant Ie

r α W α b 5 W b α o






























SVM maximize margin

max rcw b max min I wit tbl

W b W b NED W II

We need constraints

ti win b 0 i 1 2 N

Ie max margin classifier with constraints






























max rcw b max min I wit tbl

W b W b NED WII

s.t ti win t b 0 it 2 N

Quite complicated Need to simplify the problem






























1 ll will does not depend on

max min I Wit tbl
W II

Max

W b NED W.by wi 멌핾 I Witt by

2 5 W1 b is scale invariant

so we can add a constraint

멨 I WT x b I 1

3 max can be replaced by min

max

w b ll will M냄 IIWIR






























Max margin classifier

멦 11m

st ti win b 0 i 1 N

mi I Wi xi b I 1

We need to simplify the constraints






























Max margin classifier

ii 11 wilt st ti wiki b 0 i 1 N

min I Wi xi b I 1

ii 11 W R st ti win b 1 i 1 N

constraints 를 만족하는 v00

W b 집합






























Assume wix bx is the optimal solution and

Min ti WI it b α I

Let w̅ I Wx and 5 ㅎ bx Then w̅ 5 is

a feasible solution ie ti WT n t 5 1 it N

and IWI 211WH II Wall

It contradicts with the assumption that is wx optimal

Optimal solution must have ti win tb 1 for some i






























SVM

quadratic
Min wiw objective

St ti wi xi t b I in N
linear

constraints

Convex problem

support vector

ti WT x it b 의

Decision boundary

lies in the middle of the region separating data points






























Support vector machine

Overlapping classes

Non linearly separable

Soft constraints

Soft margin






























Which one is better

It looks OK Train ero is zero

But train error But over fitted

is not zero

ti W b I 뷰






























SVM

mi 늘 II WIR

st ti wi xi t b I i 1 N

멈핺 늘 wit Iii
st ti wix it b 1 3n

i 1 N

i 0






























Slack variable S

Data points are allowed to be on wrong site

of the margin boundary but with a penalty that

increases with the distance from that boundary

INTI x or AN

멈핺 늘 wit Iii K의
st ti wix it b 1 3n

i 1 N

i 0






























I o correctly classified

O Si 스 I inside the margin

but on the correct site

Si I on the wrong side of the

decision boundary

멈핺 늘 wit Iii
st ti wi xi t b 1 3n

i 1 N

i 0






























If C is large then S t O

SVM tries to classify all training

data correctly

Overfitting and weak regularization

N

멈핺 늘 WR t En Si

st ti wi xi t b 1 3n
i 1 N

i 0






























Overlapping classes Hinge loss

N

멈핺 늘 WR t CE I xi tKx.x

st ti wi xi t b 1 3n
i 1 N

i 0

3.20 and i I tic wi
Yi max 0 1 ti y i






























멌핺 늘 wit Ii
ist

i max 0 1 ti Y X El N

where Y Ni Wi t b

My 11WIR t max 0 1 ti y x

or M7g max 0 1 ti y x t t NWR

where Y Ni Win t b






























SVM Linear classifier with Hinge loss

M7g max 0 1 ti y x t t NWR

where Y Ni Win t b






























Kernel SVM






























Kernel method kernel trick or technique

Purpose 예측 분류 모델에 non linearity 를 부여

W 모두






























non linearity 를 주는 다른 방법

feature transformation or basis function

20st IX

Lt 공간 변환
11

Input space Feature space

N ICH IH2 I N






























Kernel method

방법 Key idea

If an algorithm only uses tot products of vectors

then we can replace the dot product with a kernel

function

舛必
tt KC X

ICHTECH'S

유사도 또는 상관 정도 측정

How to construct a valid kernel function






























Generalized linear regression

Linear model y x wix b

Basis function method

1 Fix a basis function I X 00C my A
T

2 Model y x WTI x with weight vector w

3 Finding w minimizing the cost function below

JCW 늘E dwi I An tnk t 골 wiw

where 720

4 Inference Y x̅ WTI x̅






























JCW 늘 Im ET Im t E WT w

Set Tw Jew 0 Then we see

T N X I
W an I n 姦a 6.3

where I is the design matrix and a ca ant with

an 一方 a wi I h tiny






























Substitute w I a into Jew 6.2

Jca 늘 at I IT I IT a ai I It it't t ii I Iia

where t t t2 tw

T.IE二 鬱 1 1 1

1_iii E I

IY
NN

1 1

I IT I i I X replace K Nx N

K j
K N y






























Kernel trick dual representation

1 Fix a kernel function K Cx x

2 Model y x Ikoyi where IK X K CX KEY KNXT

and K.CH K X X

3 Finding a minimizing the cost function below

Jca ai k ka aik t t 늘 t't t 끌 aka

where Knm K n Km 7 Z 0

4 Inference Y T K IT a Yi an K Xi x̅



Kernel support vector machine

Primal problem

mib 11WIR St tic wi t b I n N

炳



Primal problem vs Dual problem

primal problem i original objective function

minimize objective function

Dual problem i lower bound

maximize lower bound



Primal problem hard margin

mis 11 WR st tic win t b 1 n 1 N

Construct Lagrangian

To handle the inequality introduce Lagrangian multipliers

α i20 and form the Lagrangian

2 W1 b α 11 WR Xi ti win b 1

늘 IIWIR
N α XNT



Derive the dual

To obtain the dual we minimize the Lagrangian writ

w and b and maximize writ α I e

멈햄 멌 L W b

ALT o w Ei titi

85 0 Ei dit 0

Substitute these back into the Lagrangian



Eliminating w and b from ICW b 4 using these

conditions Then the gives the dual representation

I X E n 늘 E did titi
Xist

α i20 i 1 N di ti 0



Dual optimization problem

m았 E n 늘 통 α

ndjtitjxixss.tt
α n 20 i 1 N EI di ti 0



Kernel trick Kernel SVM

It the data is not linearly separable we map the

input data to a higher dimensional space using a

basis function I i
or we replace the tot product

x with a kernel key x Ie

m았 E n 늘 j 2nd tit k ti

St α 20 i 1 N titi 0



Prediction function

Once the optimal α are found the decision function

for a new input is

5 X an ti K Xi t b

where b is a bias



SVM Overlapping classes recall

N

Mii I will't CE Si primal problem

st ti wix it b 1 3n
i 1 N

i 0

Here Cso controls the trade off between the slack

variable penalty and the margin



To obtain the dual we minimize the Lagrangian writ

w and b and maximize writ α and m

M MG 2 W1 b B N M

where α W b B X MI

늘 11W Rt C玆 3 En ti YC 1 II Mi si
In of and I Mizo Y are Lagrange multipliers

α ti Y 4 It 3



We optimize out w b and 35.4

ALT o w Ei titi

2 o
2b EI dit 0

i o a C Mi

Using these results to eliminate w b and i sit

from the Lagrangian we obtain the dual Lagrangian

I X 4 α i E 2nd tit xi



We note that α IO and α i C Mi

since Mi 20 we have Xi C

Therefore we have to minimize Ica w.r.tl α it

subject

too α i C for i l N

玆 anti 0



Kernel SVM Overlapping classes

m았 E n 늘 j αndj tit k ti

St O Xn C i 1 N di ti O


