



























Chapter 4 Linear Models for Classification

Input vector X E N

Goal i assign to one of K discrete classes Ck K 의 K

So the input space is divided into decision regions Rk

whose boundaries are called decision boundaries or decision surfaces

Linear meals for classification mean that the decision boundaries

are linear functions of input vector

i.e 0 이 dimensional hyperplane
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Probabilistic motels

Two class problem binary representation

single target variable t E to If st El represents

class C and to represents class Cz

The value of t can be interpreted as the probability

that class is C
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K 2 classes problem multiclass

K dimensional vector one hot vector I of K coding

If the class is Cj then all elements tk of It are zero

except tj t 1 1 0.0 1.0

Again we can interprete tk as the probability that the

class is Ck
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In the linear motel the motel prediction ycx.us was

given by a linear function of us

For classification problem we need to predict discrete class

or more generally posterior probabilities

generalize the model in which we transform the linear

function of us using a nonlinear function fc so that

y H 5 WITH two

ft is known as an activation function Its inverse is called

a link function
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The decision boundaries correspond to ya constant

i.e wit two constant and hence decision boundaries are

linear function of

In contrast to the models used for regression classifications

are not linear in in due to 5G

As regression motels we can use a fixed nonlinear transformation

with a vector of basis functions 史 凶

We begin by considering classification directly in the original

input space x

Chapter 4 Linear Models for Classification 5






























41 Discriminant functions

Discriminant function takes x and assigns it one of K

classes Ck

We restrict attention to linear discriminants decision boundarie

are hyperplanes
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4.1.1 Two classes

The simplest linear discriminant function

yet Wix t Wo

where m is the weight vector and Wo is a bias

An input x is assigned to C if Ya Zo and

is assigned to S it ya 0

decision boundary is defined by Y K 0

Wix two
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Arbitrary point x and let ㅗ be its orthogonal project

onto decision surface so that

K E Xt t r WIT

where r 刈川will
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We can use dummy input 강의 and then define

IT i Wo WI and I Xo X so that

Y X ATE

In this case the decision boundaries are D dimensional

hyperplanes passing through the origin of Otl dim input

space
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4.1.2 Multiple classes

Now consider the extension of linear discriminant s to k 2

classes

One versus_the rest classifier

Use K 1 classifiers each of which solves a two class

problem separating class Gc from other class

This method leads to regions that are ambiguously classified
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One versus one classifier KS

Use K K D 2 discriminant functions one for every

possible pair of classes

This too run into the problem of ambiguous regions

We need too many classifiers
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Consider a single K class discriminant comprising K linear

functions of the form

Yk ㅧ mix two
Wk 1120 weight veto

W ko E IR bias

Assign a point X to class Ck if Yea Y X Yj t K

So the decision boundary between Ck and Cj is given

by WK W1 T t WKO W o 0

i.e 0 1 dimensional hyperplane
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Decision regions are singly connected and convex

Let HA and He be in Rk Let I be as

A X XA t 1 7 Xo 야 刀 1
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Since the discriminant functions are linear we obtain

Yk 7 k CHA t 1 7 YK KG

Because XA and Xo lie inside Rk Yc A Y KA and

K 썽 Y 상 V j F K hence k Y R j t K
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4 1 3 Least squares for classification

Consider a classification problem with K classes with

1 05 K scheme for the target vector

The minimization of SSE function is the method that

it approximates the conditional expectation Eal 刈 of the

target values given the input X
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Each class k k 1 2 K

Y 씨 WIE X t W ko
t T

We can group these linear motels using vector notation

ya i FT k.im
爻凶

예측값

where I is the augmented input vector I xi and

Otl x K

It T.TL TK 5K W ko WIKI
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Input X is assigned to the class for which the output

k T.it mi mo is largest

Determine the parameter matrix WT by minimizing a SSE

Consider a training data set 구씨 tn I n 1 N

Xa E RO ta E Rk one hot vector

Define a matrix T Those nth row is the vector t.li
NX10 11

T whose nth row is the vector T 1

IN예측 Vector 실제 target

SE 二 适 쀘
一 狀
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SSE function can be written as

E T Trf IT.TT IT T I

Set the gradient w.r.tt to zero vector So we obtain the

minimizing solution of GCW for UT as follows

T 必 必 T IT

where It is the pseudo inverse of The discriminant

function is given by ya Tie T TFT
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내 i the parameter matrix whose Kth column Is Mk

X the matrix whose nth row is xi

Thi G T E Tr f Km 쇼 mi TI KM t 소 mi T

where K dim i 1 1 IT Who i W o W20 We T

Calculate the derivative of Eo Wl w.r.tw

o7EoCW2NMot2lXiTTfIM0
KN No

N사 KX1

NXK

See later KXN
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We have obtained the discriminant function using least square

approach
ya Tie T TFT

where T IT

This discriminant function does not have any probabilistic

interpretation and is not robust to outliers least square
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SE penalizes prediction

that are too correct

in that

pyrene
h points

far from boundary

Logistic regression

Least square

approach
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4.1.4 Fisher's Linear discriminant

Consider a linear classification in terms of dimensionality reduction

Input X E R

Consider a projection to one dimension using

Y wix

Threshold Wo on y So if Y Z Wo then x is classified

as class C otherwise class 2

Considerable loss of information and overlapping in one dimension
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Goal i determine us or select projection maximizing the class

separation

Consider a two classes problem with N points of class C

and Nz points of class of C2

The mean vectors of the two classes

mi 돘 An 멜 늠 돖 tn

First choose us to maximize the difference of projected means

m M MT M2 M1 where Mk WT mlk
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We constrain us to have unit length i.e Ewi 1

Using a Lagrange multiplier we find

내 a M2 M1 see Fig 4.6

Second consider a small variance within each class

The within class variance of the transformed projected

data from class Ck is given by

I
neck

h Mk
2

where Yn Winn and me wink
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I

The Fisher criterion maximize

between class variance
4.261 5 W1

대爲 total within class variance

JCM
11MT M12 ml 112

돘a WTA Mit 돘 Wish mi

11 WII 에 M 112 1WTC 멜 mi Mimi mif wise W

where So M12 M1 M12 M1 T 14.2에

0시 1 0
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SF SI 돖 wi ar mi t 돖 wi Xn M12D2

wish we t wi im wi Sw m

where Sf fa 私 一 Mk An Mi K 1 2

Sw E Xn M1 Xn M1T E Xn M12 M Mi 4.28

Thus
J m

wi So 내 So i between class covariance matrix

wi Sw 내

Suri within class covariance matrix

W Edin IN 0 0 0시
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Differentiating Tcm w rt us we found Jan is maximized

when
wise 내 Sw M Wi Sw Wl Se WI 14.29

Salar Salar

We have used Tn wis m wi S ST

By 4.27 def of So So 내 is in direction of cm MI

멜 M1 에

宓
M

쁬 M2 MD M1 M1 T So

And drop the salar factors wise 내 and wi Swan

Chapter 4 Linear Models for Classification 27






























Multiplying both sites of 4.29 by Snl we then obtain

WI f Sj M12 M1 4.30

Note that if within class covariance is isotropic Sw 刀工

then solution 내 is proportional to MI M1

L4.30 is known as Fisher's linear discriminant This is

the direction for projection of the data down to 1 dimension
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W1 x M12 M1 WI a 51 M12 M1
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4.1.5 Relation to least squares

Two approaches of linear discriminants for two class problem

The least squares make the mom predictions as close

as possible as to a set of target values

N

minimize

돘샛퍘
一 迦

The Fisher criterion was derived by requiring maximum

class separation in the Him output space
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Let us see the relationship between these two approaches

We will show that the Fisher criterion can be obtained

as a special case of least squares

Let N resp Nz be of patterns in class G resp Can

Take the target values for class C to be MN

This target value approximates the reciprocal of the
prioriinverse

probability for class G

For class Cz take the targets to be N1N2
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The sum of squares error function can be written

E 늘 羔 wi Xn t Wo tni

Hn E RO M W WoT

Set the derivative of E wrt Wo and 내 to zero

2E 羔 WTHn t Wo h 0
2Wo

Ow E 羔 WTHn t Wo tn An 0 14.33
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Thus Wo wi mi 4.34

where m is the mean of total input data set and is

given by

m 亢 羔 An 六 N MI t N M12

To obtain 4.34 we have used

E tn N f N E 0
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4.33 can be written Exercise 4 6

Sw t t S W N MI 멜

where Sw is defined by 4.28 and So is defined by

4.27

Since So m is always in direction of cm mi we can

write
ma Si M2 Mh

where we have ignored irrelevant scale factors
Chapter 4 Linear Models for Classification 34






























We have also found an expression for the bias value

We Wim It means that X is classified as belonging

to class C if ya ut X M 0
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4.1.6 Fisher's discriminant for multiple classes K 2

W LOG assume 0 k

The generalization of within covariance matrix to the case

of K classes follows from 4.28 to give

Sw if Sk input space

where
Sk 돕다 Xn M1K Xn MINT

Mlk 二 交 돘 Kn
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where Nk is of patterns in a

Consider the total covariance matrix

input space우 E Xn mi Xn mi

where mi is the mean of the total data set

This ST can be decomposed into the sum of the

within class covariance matrix Sw and an additional

matrix So

Si Sw t SoChapter 4 Linear Models for Classification 37






























We identify So as a measure of the between class

covariance

4.46 8 f Nk Mlk M1 Mk MIT input space

Next we introduce D I linear features y mix

where k 1 D 0 dim weight wk

The weight vectors WIKI can be considered to be the

columns of a matrix W 0 0 so that

wi y Wix otimeto Chapter 4 Linear Models for Classification 38






























Now eine similar matrices in the project O Jim y spac

Sw i 돑 Yn Mk Yn Mcf ㅯ o matrix

and

So f Nk Mk'M Mk MT 마이 matrix

where

Mk t 늤돘 n M ㅎ E Nk Mk 亡絃 Yn
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To determine 내 we need to define a scalar benefit

which is large when So is large and when Sw is small

Consider Jcw Try si Soy feature
space

This criterion can be written as an explicit function in the

form JCW 다구 Wi Sw Mi Wise W1
ㅯ0 0 0 0 0

input space
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Remark

From 4.46 Set of So So is the sum of K matrices

and each of which is of rank I

Because of the definition of my only K 1 of these

matrices are independent

Thus So has rank at most K 1 and so there

are at most K 1 eigenvalues

So the projection onto the ki dim subspace spanned

by the eigenvectors of So does not change JCW

More than K 1 linear features are meaningless
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I A

4.1.7 The Perception algorithm linear discriminant motel

Two class classification

input vector

I its feature vector for a fixed nonlinear function Ici

Linear model of the form

ya i f wit a parameter vector W

where the nonlinear activation function to is given by

a step function of the form
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fca
a 20

뜽a co

Here I X include a bias component 1

For the perception

target values t 1 for G t l for C2

How to determine us

How to define error function of us

Misaki fiction rate
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Perception criterion
til

Idea if xn is in class G then WTI ㅃ o

S then widen 0

tn l

Using t E 1 1 1 I target coding we are seeking us st

wi 史 凶 tn 0

The perception criterion is given by

Ep un E WT I n tn 4.54
n EMChapter 4 Linear Models for Classification 44






























where M denotes the set of all mis classified patterns

So the total error function is piecewise linear for us

If X is correctly classified then the contribution to the

error is zero

The stochastic gradient descent algorithm to this error

WF i WF 7 J Ep ut WT t 7 Ian tn

where 7 is the learning rate parameter put 7 1
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If the pattern is correctly classified then 내 remains unchanged

In case it is incorrectly classified

for G we add Ian onto the current estimate of us

while for C2 we subtract Ian from us

w D

wi wi
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Remark

In view of 4.54 and 4.55 the contribution to the

error from a misclassified pattern will be reduced

wit Ian tn wi Ian tn Ian titan tn
single
component of Ep _wi Ian tn

where we have set n 1 and used Il Ian tn Ii 0

This does not the contribution to the error function

from all misclassified patterns other
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The change in m may have caused some previously

correctly classified patterns to become misdas.si tied

In case that the training data set is linearly separable

perception learning algorithm is guaranteed to find an

exact solution in a finite number of steps

by perception convergence theorem

Perception does not provide probabilistic output

Can not generalize K 2 classes

based on linear combinations of fixed basis functions
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Linear models for classification

Discriminant function

Least squared Ya FT
Fisher 火刈 Wix

Perception y X f 매화씨

PCX 1시 가정
Probabilistic models

Pa
generative pcc 1 씨 68

discriminative
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4 2 Probabilistic Generative model

Discriminative and generative approaches to classification

Consider the case of two classes

PC X l G PCC
P G1 X

p X1 G pcc p X 1 2 PC 2

4.57

It eia 이에

logistic sigmoid

where we have defined

a ln P X1 i NG 4.58
P X1 2 PC 2Chapter 4 Linear Models for Classification 50






























Remark of sigmoid

Bounded function

Symmetry property Eta 1 aa

The inverse of the logistic sigmoid is given by

a ln f logit function
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K 2 classes

PC Ck 1X
P X1 k PECK

E P Is peg

EXP ak

Ej exp Aj
soft max function

which is known as the normalized exponential multiclass

generalization of the logistic sigmoid Here ak are defined

by a i ln p X1 k PCG
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4.2.1 Continuous inputs

HE IN continuous vector
pal Gc

Assume the class conditional densities are Gaussian and

all classes share the same covariance matrix only different
mean vector

Ie

I
P X1 k

2지인 p
EXP K Mi I X M I

Here I is independent of class Ck

Chapter 4 Linear Models for Classification 53






























Consider the case of two classes From 4.57 and 4.58

to 결과

P 쁦
8 WITH two

蒸 쌌器iㆁwhere we have defined

in M M

wi imi I'm timi I'm ten 呂쁬

Because of the assumption of common covariance matrices it

becomes a linear function of x in the argument of the

logistic sigmoid
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Thus decision boundary X st pak IX C is a linear

function of X

The prior p Ck enter only through the bias parameter

Wo
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For the general case of K 2 classes under the assumption

shared covariance matrix of p X I Ck

Ak ㅧ WIE X t We

where we have defined
a ln P1X1 k PICK

Wk i E Mk

pig win x

뺘왩器

wkoit fmiimktl.nl CCk
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If each class conditional density pal Ck has its own

covariance matrix Ek then the cancellations of quadratic

form of X will no longer occur

So we obtain quadratic functions of x giving rise

to a quartic discriminant
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4.2.2 Maximum likelihood solution

Two classes classification

Data set 써 tn l n 1 N KERO tn 1 or 0

En 1 denotes class C and to denotes class Cz

Gaussian class conditional density with a shared covariance matrix
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Denote the prior class probability PCG 二 大 so that pcs

1 ㅈ

Kn from class G tn 긔 hence

P Hn C PCG p Xn 1 G ㅈ N Xn 1 M E

I
Similarly for class s h o

Shared covariance

l
P An S P C2 P Xn 1 2 1 一 兀 N Xn 1M2 I
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Thus the likelihood function is given by

p t X 1 T M M2 E 二求 ㅈ N LAI M ED 1 지 N Xn1M2 도

where t t hi 乂 二 2 乂心

As usual we maximize the log of the likelihood function

Consider first ㅈ The log likelihood function of T is

e l tn In a t 1 tn In 1 ㅈ Y
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Setting the derivative wit ㅈ equal to O So we obtain

N
兀 二 亡 羔 tn T M N

G 비율

where N resp N is of points in C resp C2

Thus MLE for ㅈ is simply the fraction of points

in a
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Now consider the maximization went Mi

The terms of loglike.lihood function depending on

ME

tn In N Xn 1 M E I E h Xn M7 I M M t constant

Setting the derivative w.r.tn to o we obtain

m 玄 乖 tn Xn

which is simply the mean of vectors Xn assigned to G
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Similarly we can obtain the result for M2 as

M2 玄 乖 1 tn in

which again is the mean of vectors xn assigned to s

Finally consider the NILE solution for E Pick out the

terms in the log likelihood function depending on E we hav

t E tnlnlEI.EE tncxn m.it Xn M
nㅕ

I E 1 til h l II t f l ta Xn M2 TI Xn M2
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E ln l E1 E Tr l E s l

where we have defined

S f 5 t E Sz

S 돖 an m Xn mi

S2 돒 Xn M2 Xn MI

Using the standard result for MLE solution for a Gaussian

distribution we see that s S
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4.2.3 Discrete features

Consider the case of discrete feature value xi

For simplicity assume Xi E 30 19 and D dim vector

X 가 가 of

Here we will make the naive Bayes assumption the feature

values are treated as independent conditioned on Ck

I.e P 八 X21 k PC가 1G P X21 k

Thus class conditional distributions are given by

p X 1 G 윥 Pail K 杰 M 1 Mei 481
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which contain O independent parameters for each class

PC가 1 k Mi 1 Mai
Mc Ck 라는 가정하에 가 1 일 확률

가 E 0 1

Substituting into 4.63 Ak ln P 1 k PC k

Aka ft Xi la Mei t 1 자 ln 1 Mci Y t In peck

which are linear linear functions of sci
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4.3 Probabilistic Discriminative Models

Finding the parameters of a generalized linear motel

Generative mom vs discriminative motel
indirect Hired

Generative motel i Fitting class conditional densities pal Ck

and class priors separately and then applying Eye's Theorem

Discriminative model i Maximizing a likelihood function defined through

the conditional distribution p Ck IX

Remarks of two approaches
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4.3.1 Fixed basis functions

Eco vector of basis functions 3 있 I ㅧ 1

We make a fixed nonlinear transformation of the inputs

The resulting decision boundaries will be nonlinear in the

original input x space linear in the feature space

We shall include a fixed basis function transformation 모씨
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For many problems in the real world there is a significant

overlap between the class conditional densities pal Ck

pal G pal 2

input space

Note that nonlinear transformation cannot remove such class

overlap i.e this transformation can make it possible to

separate points that are not linearly separable

Suitable choices of nonlinearity can make the

process of modelling the posterior probabilities

easier
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4.3.2 Logistic regression

Two class classification

In section 4.2 4.57 we saw that under rather general

assumptions the posterior probability of class C can be write

AS
pcc I 모 y E EC Wit

with pcs II 1 p G1I Here coco is the logistic

sigmoid function and I is the feature vector i.e 史一一 와서
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For M dim feature space this motel has M adjustable

linearly
parameters m

By contrast Gaussian class conditional densities motel using

maximum likelihood method needs 2M parameters for mean

vectors and MCM tl 2 parameters for shared covariance

matrix Together with class prior this gives a total

of M Mt 5 2 1 parameters
quadratically
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Determine the paiiete.rs of the logistic regression motel

Use maximum likelihood method

For a data set In.tn where ta E to.ly and If I

with n 1 2 N the likelihood function can be written

p 1 m 求 yfnhl Y.it tn 0 or 1

where Ch ta hi and Yn p C l I 8 WTI

til tn

Open1 M Yin 1 Yn
h

h o or I its prediction Yn or th
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Negative logarithm of the likelihood which gives the cross_

entropy error function in the form

E M ln P H1 M E d ta ln Yn t l h ln I h Y

where yn o can an wi In with In Ian

The gradient of the error function w.r.tw Is given by

Jw E m E 쓿F
IF

vector

4 에

We have used E o 1 0
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From 4.91 we can use a sequential algorithm The

weight vector us is updated in which 7 En is the

nth term in 4.91
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4.3.3 Iterated reweighted least squares

In the case of the linear regression mom MLE

solution on the assumption of a Gaussian noise motel

leads to a closed form solution

For logistic regression there is no longer a closed for

solution However the error function Ecm is convex Hence

there is a unique minimum
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The error function can be minimized by an iterative technique

based on the Newton Raphson iterative optimization scheme

Fletcher 1987 Bishop and Nab ney 2008

win WTH _H T E WI

where H is the Hessian matrix 77 ECW wrt us

First apply Newton Raph son to the linear regression

Motel T E ut f wien.tn In E 모 내 Et

H 77 Ecm E 모 inte of 내Chapter 4 Linear Models for Classification 76






























where I is the Nx M design matrix whose nth row

is given by Ii So

wine wt ri TE cut

wild Edit It wild _E'til

If It

is the standard least squares solution Since the SSE is

the quadratic form of us Newton Raphson formula gives

the exact solution in one step
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Second apply Newton Raph son to the logistic regression

motel with cross entropy error function

N E W1 E h ta In IT y H

H 77Ecm E Yn th En Ii I RE

where R is the NaN diagonal matrix with elements

Rm Ya 1 Yn
가 oc wi In

Here H is not independent of us So the error function

is not quadratic form of us
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I 1

Sine h o wi I 씨

0C Yn CI and UT H Ul o for V al E RM

So Hessian matrix H Is positive definite Hence the error

function E is a convex function of us and ㅋ minimum

view wild ER III Y t

IR If I IRI wi Icy t y

IR IT I R E 4.99
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where Z is the N dimensional vector with

i I uit I 녀 t

y least squared

Read the MLE solution for 내 of the linear regression

내 ML TIP IT t

4.99 Is the form of a set of normal equations for a

weighted least squares problem
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The weighting matrix R is not constant but depends

on 내

So we must apply the normal equations iteratively

For this reason the algorithm is known as I RLS

iterative revisited least squares
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4.3.4 Multi class logistic regression

In section 4.2 we discussed the generative models for

multiclass classification The posterior probabilities are given by

a soft max transformation of linear functions of feature

variables

P Ck I 모 k I ifad

where the activations Ak are given by

Ak WII I I 0.4 있 刈尸
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There we used MLE to determine separately the Gaussian

class conditional densities and the class priors and then

found the corresponding posterior probabilities thereby

implicitly determining the parameters I 내서

Here we consider the use of maximum likelihood to

determine the parameters hung of this motel directly
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En one hot vector In i feature vector

The likelihood function is given by

P T l un W k 求 求 p Ck l If 求 求 ynIk

where Yak Yk En and ㅠ is an N X K matrix of

target variables with elements trek

p t I 내 Wk T pacy at one hot vector

이 weight vector 들로 해당 target 가 나올 확률

For some fixed n Ek tank 1 돇Ynk 1Chapter 4 Linear Models for Classification 84






























X 1 X

Taking the negative logarithm then gives

E 내 내 k ln P T I 내 WIK E E tnk ln Yank

which is known as the cross entropy error function for

the multi class classification problem

Note that the derivatives of Ya w rt all Aj

ji Yk Ik Y YK Effect

where Ik are the elements of identity matrix
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We now take the gradient of the error function w rt

one of the parameter vectors WI

basis function
4 10917m EC 에 내 k 홈 器 i In

error

where we have used I tnk 1

Note that we see the same form arising for the

gradient as was found for SSE with linear regression

and the cross_ entropy error for the logistic regression

motel
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So we can use this to formulate a sequential algorithm

In this case each of the weight vectors is updated

using wit wi 7 T En 3.22

Now to find a batch algorithm we appeal to the

Newton Raphson update to obtain the corresponding IRIS
Mk X MK

algorithm The Hessian matrix that comprises blocks of size

MX M in which block J K is given by

Two Tk E Wh Mk E Yank Ik Yn In Ii
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This Hessian matrix for the multiclass logistic regression model

is positive definite and so the error function again has

a unique minimum
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4.3.5 Prob't regression

Consider the two class classification and the framework of

generalized linear motels so that

Pct 의 1 a 5 ca

where a wit and fo is the activation function

Consider a noisy threshold model For each input

In I Xn we evaluate an wien and then set

the target value according to
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f
ta l

ta o

it an za

otherwise

If the value O P 에 then the corresponding activation

function f will be given by

fca If PLO to
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As a specific example pco Sato

to

fca 1 it a zoo otherwise 5cal 0

In addition PCO N O l o l the corresponding cumulative

distribution function is given by

모 a i f N 01 0 1 to

which is known as the inverse probit function
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Remark

It has sigmoidal shape

The use of a general Gaussian does not change the mode

ert function

etf Ca E f exp 02 to
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at function is related to the inverse probit function b

I a It it erf i

The generalized linear motel based on an inverse probit

activation function is known as probit regression

Remark

The probit motel is significantly more sensitive to outliers

sigmoid expense vs inverse probit expert

as set to
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4.4 The Laplace Approximation

In section 4.5 we will discuss the Bayesian treatment of

logistic regression We cannot integrate exactly over the

parameter vector 내 since the posterior distribution is no

longer Gaussian So it is necessary to introduce some

form of approximation

Now we introduce the Laplace approximation that aims

to find a Gaussian approximation to unknown prob density

defined over a set of continuous variables
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Zi single continuous variable

Suppose the distribution pez is defined by

PLZ E f Z

where Z is a normalization constant and assumed to be

unknown

In the Laplace method the goal is to find a Gaussian

approximation q z which is centered on a mode of PE
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First find a mode pez i.e Zo st 5 0

f Jfl Ezo
0

Note that the logarithm of Gaussian distribution is a

quadratic form of variables Therefore a Taylor expansion of

la fez centered on the mode Zo is given by

ln f Z ln f ㅀ ㅎ A Z Z이
2

where A E ln f Z
Z ㅭChapter 4 Linear Models for Classification 96






























Taking the exponential we obtain

f Z f to exp Z Z이2

We can then obtain a normalized distribution qcz so tha

4C리 쓾 exp 1 cz z.tl

Note that it will only be well defined if its precision

A 0 ㅎ must be local maximum or fit 0
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i M dim vector

Extent the Laplace method to approximate PH 5 년 z

At a stationary point 킹 75 에 will vanish Expanding

around this stationary point 링 we have

ln f 키 hf ㄶ E E ti A 러 러

where Mx M Hessian matrix A is defined by

A J 7 M 5 제 1
카타
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Taking exponential we obtain

f 레 르 5 탕 exp I E ED A E ㅀ

Thus

4C근 占箭 exp I E ㅀi A E ㅀ Y N E1 링 A

where I Al denotes the determinant of A

As before this Gaussian will be well defined if It is

positive definite
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Remark

Need to find a mode to and evaluate Hessian matrix

In practice a mode will be found by running some

form of numerical optimization algorithm

Limitations of multimodal case

Normalization constant Z does not need to be known
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As well as approximating the distribution peas we can

obtain an approximation to Z

Z S f E d t f 킹 exp f t 러 ti A Ct_to d

f 커이
2지세고

l Al 2
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4.5 Bayesian Logistic Regression

The evaluation of the posterior distribution over us would

require normalization of the product of a prior distribution

and a likelihood function Note that the likelihood function

comprises a product of logistic sigmoid by our assumption

i.e PCH 1 m T.tt 1 Yat h o wi In

Evaluation of the predictive distribution is similarly intractable

Here we consider the application of the Laplace approximation

to the problem of Bayesian logistic regression
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4.5.1 Laplace approximation

We need the evaluation of the second derivatives of the

log posterior finding the Hessian matrix

Because we seek a Gaussian representation approximation

for the posterior distribution we introduce a Gaussian prior

PCM N W1 l Mo So

where 멩 So are fixed hyperparameters

Chapter 4 Linear Models for Classification 103



The posterior distribution over us is given by

pants a ii pitti
Gaussian product of sigmoid

where i ti tai Taking the log of both sites

ln P M1 t I ut mbf i W mi

E l ta ln Yn t I ta ln l h Y t constant

where h E Wien
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To obtain a Gaussian approximation to the posterior

distribution we first maximize the posterior distribution

to give the MAP maximum a posterior solution Wmap

defining the mean mode of Gaussian The covariance is

then given by

心二 77 hPa1 t i E h i h In di

The Gaussian approximation to the posterior distribution

q m N W1 1 W
MAP Sir
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4.5.2 Predictive distribution

There remains the take of marginalizing w rt q cm to

make prediction Let I ta be the feature vector

The predictive distribution for C is obtained by marginalizing

writ pull It which is itself approximated by a

Gaussian distribution q cm so that

PCC I I.tt 1 p C l I W1 P W1 It dm 1 WTO 4Cm tw

i.e PC 21 E k 1 PCC I I.lt
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Let Sco be the Dirac delta function Then we have

WITI 1 S a wit a ta

From this

S E WITI q cm dm Soca pea da

EC 이
where

Gaussian

peat 1 S A wi I 4Cm due new prob

distribution
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The Dirac delta imposes a linear constraint on us

So Pa forms a marginal distribution from the joint

distribution 4cm by integrating out all directions

orthogonal to E It follows that PC에 is Gaussian

Ma E 이 S PC에 at a S S A wi I 4Cm due at a

1 sea wie at aq cm dm

S wi I q m dm

MMAp E
N 내 I MMAp.SN
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Similarly

of var a 1 pea l d East ta

S qui cut IT mi ET l two IT 요 모

We have used qc.us N 내 I WMAP Sir

Thus the variational approximation to the predictive distribution

becomes
4151

PCC It 1 이에 pca ta S E O N al Ma 앗 ta
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This integral cannot be analytically So we approximate

aca by 史 切 a with suitable value 刀 say T 제8

The advantage of using an inverse profit function is that

the below integral convolution can be expressed analytically

in terms of another inverse profit function

M
f I a N A1 µ 02 ta I

T2 o Y2

Spiegel halter and Lauritzen 1990 Mackay 1992 bi Barber

and Bishop 1998 a
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We apply the approximation aa 모네에 and it leads

to the following approximation

Soca N Cal µ 82 ta o K d µ

where we defined

K 82 It ㅈ 0구8I
는
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Applying this result to 4.151 we obtain the approximate

predictive distribution in the form

PCC I I.lt E K GE Ma
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