Anomaly Detection in Sensing Data Based on RRCF

- 2020 KSIAM Annual Meeting
- Minjung Gim at NIMS
- Join work with Jin-Hwan Cho, Dong Heon Choe

- Ph.D. in Mathematics(Probability)
- Senior research scientist at NIMS
- Research interests
 - Anomaly detection methods
 - Mathematical data science
- Research Projects
 - 한국연구재단 '4차 산업혁명과 수학, 전략과제'
 - 중소기업기술정보진흥원 '창업성장기술개발사업 혁신형 창업과제' (주)타키온테크 수탁 과제

Industrial Problem

- Tachyon Tech(Inc.)
 - Startup company own technology related to smart factory
 - Solution for detecting defects and abnormal machine status by analyzing manufacturing process data
- (rough) Explanation
 - One class classification in sensing data
 - Mathematical improvement of anomaly detection method

- Task of discerning unusual samples in data
- Identifying unexpected observation or event in data
- Variants of anomaly detection problem
 - Binary classification
 - Highly imbalanced binary classification
 - Outlier detection
 - One class classification(novelty detection)

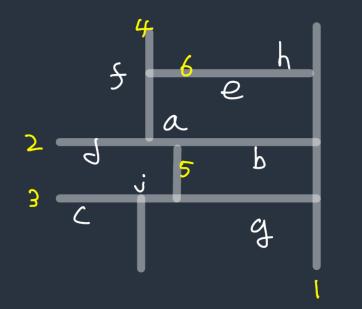
- (detailed) Explanation
 - Real time anomaly detection solution
 - RRCF is effective method for OCC in sensing data(2019 May)
 - High accuracy and AUROC
 - (Weakness) too slow and too big model size

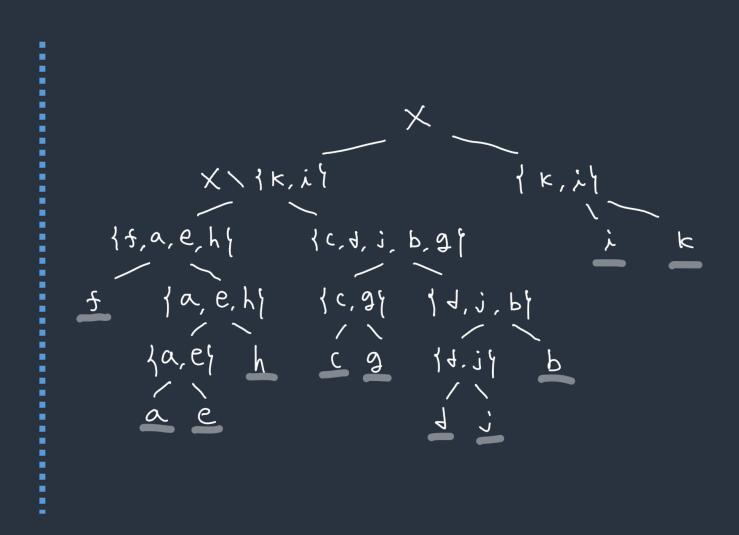
- Robust Random Cut Forest Based Anomaly Detection On Streams, Proceedings of the 33rd ICML, New York (2016)
 S. Guha, N. Mishra, G. Roy, O. Schrijvers
- Anomaly detection algorithm for dynamic data streams
- A variant of "Isolation Forest" (2008)
- Built in Amazon SageMaker
- Random tree based and bagging ensemble method

Robust Random Cut Forest

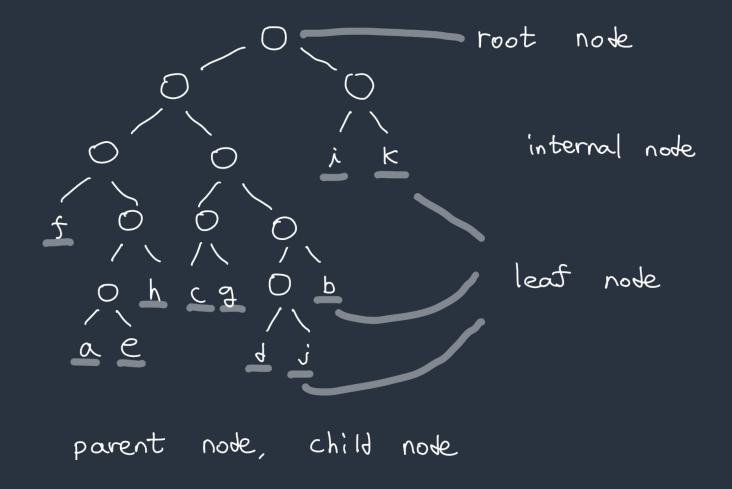
- Generate binary tree called RRCTree
 - RRCF is a collection of RRCTrees
- Calculate Collusive displacement of x, anomaly score of x
- Techniques for Streaming data
 - Insertion and Deletion
 - RRCTree Prob. space

- Definition.
 Robust random cut tree(RRCTree) on point set S is generated as follows:
 - 1. Choose a random dimension proportional to $\frac{\ell_i}{\sum_j \ell_j}$ where


$$\ell_i = max_{x \in S}x_i - min_{x \in S}x_i$$


- 2. Choose $X_i \sim Uniform[min_{x \in S} x_i, max_{x \in S} x_i]$
- 3. Let $S_1=\{\mathbb{x}\in S, x_i\leq X_i\}$ and $S_2=S\setminus S_1$ and recurse on S_1 and S_2
- Remark: Reduce the impact of unrelated features

Example



Example

Robust Random Cut Forest(scoring)

- DISP(x): the change of sum of depths when x is deleted
 - the number of sibling or their descendants
 - the change in the model complexity of all other points
- CoDISP(x): maximum among DISP of x and of its neighbors
 - to remove masking effects(colluder)

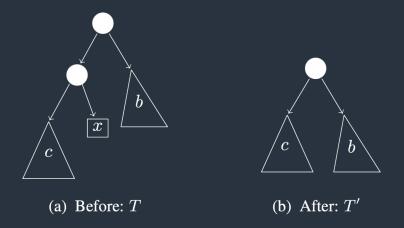
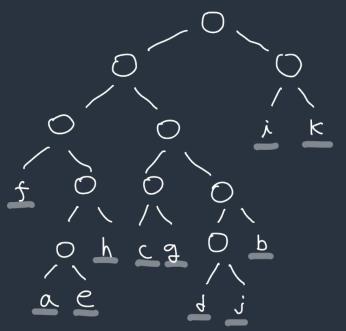
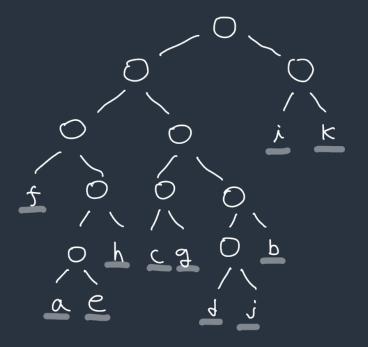



Figure 1. Decremental maintenance of trees.

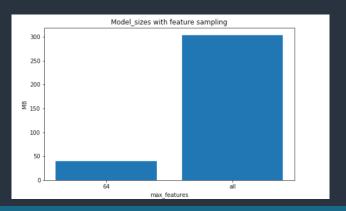


- RRCTree Prob. Space RRCF(S) for a set S, some tree T
- Deletion of a point p in T
 - remove p and its parent node, then $T'(S \setminus p)$ is uniquely determined

- RRCTree Prob. Space RRCF(S) for a set S, some tree T
- Insertion of a point p, not in T
 - insert p into a tree T and produce tree $T'(S \cup \{p\})$
 - with Insert Point Algorithm
 - tree $T'(S \cup \{p\})$ is not uniquely determined

- (detailed) Explanation
 - Real time anomaly detection solution
 - RRCF is effective method for OCC in sensing data(2019 May)
 - High accuracy and AUROC
 - (Weakness) too slow and too big model size

- Deletion and Insertion for OCC(2019 May)
- Optimize calculation of CoDISP of a new observation
 - novelty detection setting
 - no insertion and deletion
- Deterministic CoDISP(called expected CoDISP)
 - CoDISP of RRCF model is not deterministic because of Insert Point Algorithm
- Feature sampling(exploit and explore)
 - randomly sample from all features before generate a tree

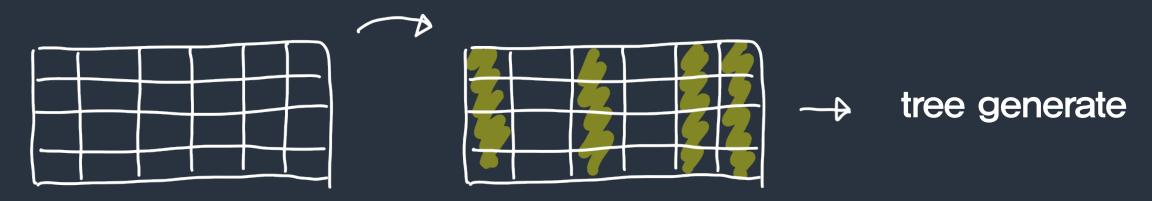


- Test setting
 - Intel® Core™ i7-8750H CPU @ 2.20GHz 6 Cores
 - speed improvement

n_tree	128	256	512
Original RRCF	124.3	248.0	502.5
Our RRCF	16.7	33.4	66.1

(second)

size improvement

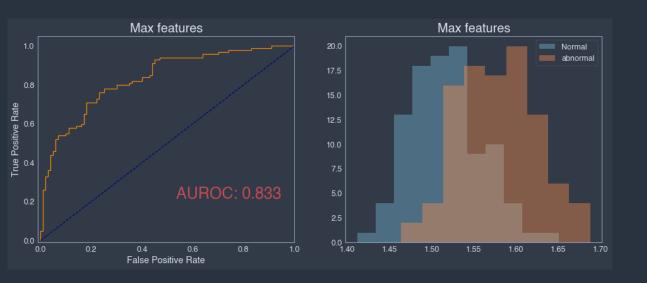


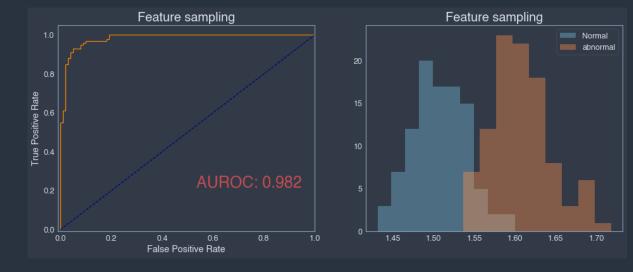
Feature sampling technique

- Feature sampling(explore all features)
 - randomly sample from all features before generate a tree
 - efficiently detect anomaly in small scale features

feature sampling(randomly)

Feature sampling technique


Test


- train: (1000, 100) distributed in $(U(0, 10) \times 95, U(0, 1) \times 5)$
- test: (200, 100) inliers and outliers $(U(0, 10) \times 95, U(1, 2) \times 5)$

Test result(all features vs feature sampling)

Use all features
 AUROC: 0.833

Sample 4 features

AUROC: 0.982

- Develop new scoring function(stable and explainable)
- Find new approach using random cut tree
- Analyze and verify random tree based anomaly detection

Thank you

• DISP(x,Z): the increase in the model complexity of all other points, i.e., for a set Z, to capture the externality introduced by x, define, where $T' = T(Z - \{x\})$,

$$DISP(x,Z) = \sum_{T,y \in Z - \{x\}} \mathbb{P}[T] (f(y,Z,T) - f(y,Z - \{x\},T'))$$

Insert Point Algorithm

Algorithm 2 Algorithm InsertPoint.

- 1: We have a set of points S' and a tree T(S'). We want to insert p and produce tree $T'(S' \cup \{p\})$.
- 2: If $S' = \emptyset$ then we return a node containing the single node p.
- 3: Otherwise S' has a bounding box $B(S') = [x_1^{\ell}, x_1^{h}] \times [x_2^{\ell}, x_2^{h}] \times \cdots [x_d^{\ell}, x_d^{h}]$. Let $x_i^{\ell} \leq x_i^{h}$ for all i.
- 4: For all i let $\hat{x}_i^{\ell} = \min\{p_i, x_i^{\ell}\}$ and $\hat{x}_i^h = \max\{x_i^h, p_i\}$.
- 5: Choose a random number $r \in [0, \sum_i (\hat{x}_i^h \hat{x}_i^\ell)]$.
- 6: This r corresponds to a specific choice of a cut in the construction of $RRCF(S' \cup \{p\})$. For instance we can compute $\arg\min\{j|\sum_{i=1}^{j}(\hat{x}_i^h-\hat{x}_i^\ell)\geq r\}$ and the cut corresponds to choosing $\hat{x}_j^\ell+\sum_{i=1}^{j}(\hat{x}_i^h-\hat{x}_i^\ell)-r$ in dimension j.

- 7: If this cut separates S' and p (i.e., is not in the interval $[x_j^\ell, x_j^h]$) then and we can use this as the first cut for $T'(S' \cup \{p\})$. We create a node one side of the cut is p and the other side of the node is the tree T(S').
- 8: If this cut does not separate S' and p then we throw away the cut! We choose the exact same dimension as T(S') in $T'(S' \cup \{p\})$ and the exact same value of the cut chosen by T(S') and perform the split. The point p goes to one of the sides, say with subset S''. We repeat this procedure with a smaller bounding box B(S'') of S''. For the other side we use the same subtree as in T(S').
- 9: In either case we update the bounding box of T'.